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Here the indices n = 1, 2, 3 characterize the dimension of system (1.1). Inequalities 

(5.1) are explained if we interpret the correction problem in case n = 1 as the prob- 

lem of approaching a specified plane in a three-dimensional space at the final instant, 

the case n = 2 as a problem of approaching a straight line, and the case n = 3 as a 

problem of approaching a point. An increase in n signifies an increase in the number 
of correctable parameters, i.e. a complication of the control problem, and leads to a 

growth of the functional. Domains &‘, 8,O expand as n grows (see Fig. 3). 

In conclusion we note that each solution of the correction problem, obtained in the 

selfsimilar variables y, z, is equivalent to the solution of an entire class of optimal 
impulse control problems in the original variables ‘6, r, 4. 
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A controlled mechanical system consisting of a suspended load (a pendulum) , 
whose point of suspension can move along a horizontal straight line at some li- 
mited speed is considered. The optimum law of motion of the point of suspen- 
sion is established, which ensures that the pendulum moves over a specified dis- 
tance in the shortest time and is stationary at the beginning and end of transla- 
tion, i.e. oscillations are absent at the end point. 

This problem arises in investigations of optimum operation conditions of the 
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widely used travelling cranes. Similar problems were previously considered, for 

instance, in /l - 3/. The considered here speed of the suspension point corre- 

sponds to characteristics of a real motor, and leads to the imposition of restric- 

tions on phase coordinates. 

1. Statement of problem. The considered mechanical system consists of a 

physical pendulum whose suspension point 11/1 can move along the horizontal straight 

line 0% (Fig. 1). The following notation is used: cp is the angle of deflection of the 

load mass center C from vertical, z is the coordinate of the suspension point from the 
coordinate origin (I, along the s-axis, m is the mass of the load, g is the acceleration 

of gravity, I is the load moment of inertia about the suspension point, and L is thedis- 

tance ~lilC between the suspension point and the load center of mass. For small oscilla- 
tion of a pendulum the linear equation defining its motion under the action of gravity 

and inertia forces is 

M 

X F “I 
c I 

Fig. 1 

lcp” = - mgLrp -+ mLw (1.1) 

where dots denote derivatives with respect to time, and w 

is the acceleration of the point of suspension. As stated, 

the velocity u of the point cannot exceed some constant 

value uO. Hence 

2’ = v, u’ = w, f u I\< vij (1.2) 

The system begins to move at the instant of time t = 0 
and comes to rest at some instant t = T . We express 
these conditions in the form 

cp (0) = cp’ (0) = x (0) = u (0) = 0 (1.3) 

cp (T) = q'(T) = v(T) = 0, x(T) = a 

where a is the translation of the load and the z-axis is directed so that u > 0. Formu- 
las (1.1) - (1.3) represent the equations of motion of the system, the boundary conditions 

and the restrictions. 
Equations (1.1) are valid for small oscillations and a rigid connection between the load 

and the point of suspension. We shall show that the considered model can be also applied 

to the case of a nonrigid connection similar to a thread, provided the oscillations are 
small. 

The order of magnitude of parameters I, of the oscillation period T,, and of theoscil- 

lation amplimde c&, is, respectively, rnL2, Ly2g-“* and u~~-~~~L-*~~. The condition of oscil- 
lation smallness is of the form ‘po < 1. If the connection is not rigid the load can move 
independently of it, particularly, at the instant of change of the suspension point velocity. 
This results in a shock at the instant of restoration of the connection between the load 
and the point of suspension. It can be readily shown that the time elapsed between the 
instant of loss of connection between these and that of its restoration is of the order of 

to - &$&$Y1 - T,(P; < T, 

Hence, if the condition qO - u,g -“z L-“” 4 1 for the smallness of oscillations is 
satisfied, the motion in the case of nonrigid connection is close to that of a rigid con- 
nection with a cowiderable degree of accuracy. 
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We pass to dimensionless variables, selecting vOas the unit of velocity and To = 

P’z (~g~)-‘/a, which is the inverse of the natural frequency of oscillations of the pen- 

dulum. Letus make the following substitution in (l.l)- (1.3): 

t = Tot’, J: = voTOx’, u = u$J’, w = vOTo-W 

cp = voTo~~g3-p’, T = TOT’, a = uOTOa’ (To = 

The subsequent analysis is carried out in dime~ionl~s variables 

(1.4) 

I’/2 (mgL)“%) 

with the primes omit- 

ted for convenience. The substitution of (1.4) in formulas (1.1) and (1.2) yields 

cp” + 9, = w, 5’ = v, v’ = w, 1 v 1 < 1 (1.5) 

while formula (1.3) remains unchanged. 

1) The problem of time-optimum operation. Let distance a > 0 

be fixed. We have to determine the law of change for w (t} and for the corresponding 

to it u (t) , which would satisfy all equations (1.3) and (1.5) and yield the minimum 

operation time T . 
2). The problem of maximum translation. Lettime 2’ ofmotion 

be fixed. We have to derive the laws for w (t) and u (t) which would satisfy all equa- 

tions (1.3) and (1.5) and yield the maximum path a traversed by the pendulum, 

Problems (1) and (2) are evidently interrelated as follows. If the solution of problem 

(2) yields a monotonically increasing (and it will be shown that this is so) depedence 

a (T) of the maximum path on time, the solution of problem (1) for some a = a, is 

the same as that of problem (2) for T = T, derived from the equation a (T,) =a,. 
Because of this, problem (2) is solved first. 

2. Integration of equations. The first two of Eqs. (1.5) are integrated on 
the assumption that u (t) and w (t) are specified functions and that initial conditions 

(1.3) are satisfied for t = 0. We substitute the obtained result into the boundary con- 
ditions (1.3) for t = T , which yields 

T 

5 ur (E) sin (!! - T)&=O, ~w~~~~~~~~-T~~~=O, (2.1) 
0 0 

T 

s 
v(E)@ = a, 

0 

To solve problem (2) it is necessary to determine functions V (f) and w (t), related 

by the equation v’ = w, which satisfy Eqs. (2. l), conditions v (T) = u (0) = 0, and 

the restriction f u (t) 1 < 1 for all 0 < t < T , and also the condition for the func- 
tional a defined by the equality in (2.1) to be maximum. All these equations, inequal- 
ities, and the functional are linear with respect to v and w. Hence the solution of the 

problem is valid at the limits, i. e. 
10, TJ. 

1 u (t) 1 = 1 for almost all t’s in the interval 

Because of this, velocity U (t) is sought in the form of a piecewise-constant function 

that assumes the values & 1. We denote by n the number of nonzero intervals of con- 
stancy of v (t), by ti the length of the i-th interval, and by u the value of v (t) in the 
first interval. Thus for the velocity and acceleration w = v’ we have 
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i-1 

V(t) =U(-l)i+‘, 2 tj<t <i tj, i=i,...,IE 
j=1 ki 

w(b) = u 
[ 
S(b) - 2i2(-1)‘S (f-s'tj) +(-1)“8(t-T)] 

j=l 

where 6 denotes the delta function. Quantities ti satisfy conditions 
n 

Substituting equalities (2.2) into formulas (2, l), we obtain 

(2.3) 

(2.4) 

Problem (2) has, thus, been reduced to the selection of the integer n, quantity u = 
-&I ) and of numbers ti that satisfy restrictions (2.3) and (2.4), and also maximize quan- 
tity a defined in (2.49. 

First, let us consider separately the simple cases of n = 1 and n = 2. 

For n =f: 1 the summation with respect to i is omitted in formulas (2.4) which then 

reduce to sin T = 0 and cos T = 1, and yield 2’ = Znk, where k is an integer. From 

formula (2.3) we have 2, = T, and from formula (2.4) we find that a = 2’ when Z[ = 1. 

Since 1 u 1 < 1. we, evidently, always have cz < T . Thus the mode with n = 1, tI = T 
and u = 1 is optimum for T = 271k and provides to functional a the absolute maximum 

which is T = 2nk, k = 1, 2, . . . The motion of the point of suspension takes place at 

constant velocity u = i when 0 < t < T. The phase trajectory of the pendulum in the 

Fig. 2 

plane cp, cp’ is shown in Fig. 2 for T = 2s. The trajec- 

tory consists of segments [0, 11 of the T.-axis which 

is traversed in opposite directions at instants t = o 
and t = T of switching the motor on and off, and of 
a unit circle which for u = 1 and w = 0 corresponds 
to the pendulum motion defined by Eq. (1.5) and for 
3’ = 2nk is described k times. 

For n = 2 Eqs. (2.4) yield 

sinT = 2 sin E,, eos T + f = 2 CQS t,. 

Squaring and adding these two equations, after sim- 
plification, we obtain cos T = 1, hence T = Znk. 
Since the optimum control has been already determined 
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in problem (2), hence for T = 2nk modes with n = 2 are not optimum for any 2’. 

In what follows we consider modes with n > 2, and assume that 

T=&k +T, O<T<&C, k=O, . . .i (2.5) 

3. Conditions of optimum. For fixed n > 2 the variables ti change in the 

open region (see (2.3)), hence for rhe determination of the maximum a with restrictions 

(2.3) and (2.4) we formulate the Lagrange function and equate its partial derivatives to 
zero 

an 
---=u+~ho, 

an 
at1 

- = u (- 1)~+1+h-2 i (- 1)” x 
at, 

(3.1) 

i=2 

[I'~O~(~ti)-iL1sin(~tj)lr s=2,...,n 
p=i j=i 

(A = a i- hT + PI%+ P&S) 

where 1, ~1~ and 11s are Lagrange multipliers of which the last two cannot be simultan- 

eously zero, since then system (3.1) is not satisfied. Because of this we set pr = p cos v 

and ps = p sin v, where p > 0 , and v are new constants. Constructing me remain- 

ders &I f dt, - &I I &, after substimtion,~om system (3.1) we obtain 

COS(V+itj)=--+-+ s=Z,...,n 
j=r 

(3.2) 

The subtraction of the (8 -t 1) -st equation from the S-th equation of system (3.2) 

yields 

sin +-sin (V++ + jx$+ltj) SO, SE&. . **n--i (3.3) 

Let us assume that for a certain s we have t, > 2n , and set tar = t, - &I and 
t,’ = t, $ 2n for u = 1 and t r - t -27~ and t,l=t,+h foru--1. 
In other words, we transfer ikterva; ofzd length from the s-th interval to the first in- 
terval for which velocity u TL: 1. It will be readily seen that the above ~bstitution doesnot 

violate conditions (2.3) and (2.4) and that quantity a which is being maximized, is not 

diminished by it. Thus, after the above transformation it is possible to set 

O<t,<2n, t,>O, 2<s<n, u=l (3.4) 

o< t, < 2n, t, > 0, s# 2, 1 <S < 72, r.6 = --1 

without loss of generality. 

Let us assume that for n ) 4 and u = -1 we find t, = 2nZ,, where 1, > 0 is 
an integer. We set t,l = 0 and t,’ = t4 + 22~4, which is equivalent to the transfer 
of interval i$ to t,s After that the interval ts becomes zero, intervals t, and t, are 
combined, and the number r~ is reduced by two. These transformations do not affect 
parameters T and n, and can be continued until either ts ceases to be a multiple of 

2% or n(4. 
Because of this the equality t, = 2nZ,, 1, = 1, 2,. . . need to be consideredonly 

for n = 3. In that case the substitution of i$, = Zn.$ into Eqs. (2.4) yields 

sin T - 2 sin t, + 2 sin t, = 0, cos T - 2 cos t, + 2 COS ts - 1 = 0 
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This implies that T = &XI?, where ii is an integer. Since the optimum conuol for 

‘J” = 2xk has been already determined, it is possible to eliminate the equality t, == 

&-cl, from the analysis for all n > 2 , and supplement (3.4) by 

t, = 23x1, + 72, 0 < Tz < 2n, 12=0,1, . . ..u=--1 (3.5) 

For s > 2 with conditions (3.4) and (3.5) satisfied we have sin (ts / 2) # 0, and 

Eqs. (3.3) yield 

V++ + 5 tj = z,n, s=Z,...,n-1 (3.6) 
j=s+1 

where I, are integers. Subtracting the (s +- 1) -st from the s-th equation in (3.6), we 

obtain the equalities 
t, + t, .1 -mm 2 (i, - I,,,) 3-c, s = 2, . .( II - 3 

which with allowance for restrictions (3.4) and (3.5) yield for u ~- i and u -L -g 

t, = t,, s =4,6,8, . . .; t,=2n-tt,,s=3,5,7 )... (s<<--1,u ==--I) (3.7) 

t, = ~~,s=4,6,8 ,...; ts==2n--aa,.<=3,5,7,. ..(s<<-I,u=-1) (3.8) 

Note that the transformation of system (3.1) to (3.7) and (3.8) reduces the number of 
equations from IZ to n - 3. The omitted equations may be used for determining La- 

grangian multipliers. 

Each of systems (3.7) and (3.8) contain one unknown quantity (tz and 7s , respectively), 

which makes it possible to define in its terms all t,, except t, and t,. For the deter- 
mination of the four unknowns t,, t, (or zs), t, and a we have equalities (2.3) and 

(2.4) with restrictions (3.4) and (3.5). The solution that yields the maximum a is tobe 

chosen from solutions of that system. The number ?Z of sections and the quantity u ~~ 

&I, which are parameters affecting the solution, must also be selected so as to obtain 
maximum a . The modes determined in this manner are optimal. 

Let us consider separately the modes with even and odd numbers of intervals 12. > %. 

4, Modec with an even number of intervals. Letus,first,set n= 21, 

where 2 > 1 is an integer. Substituting expressions (3.7) and (3.8) into equalities (2.4) 

for u = 1 and u = -1, respectively, we obtain in both cases the following equations : 

sin T - 21 sin t, $- 2(Z - 1) sin (t,, - t2) = 0 (4.1) 
cos T - 22 cos t, _1- 2 (I - 1) cos (t, - t*) + 1 = 0 

where formula (3.5) is used for the case of u =: - 1 . We transfer terms containing 
SIII t, and cos t, to the right-hand sides of Eqs- (4. l), square both equations, and add 

them together. After some elementary transformations we obtain 

I’ T 
sin*I’-t(cosT~1)“-f~4(1--1)‘~.~8(I--l)cos2 cos(tn-_fa-- 

) 
=412 

which after simplification becomes 

cos (T/2) cos (t, - t, - T/2) = 1 + (1 - cos T)/(4Z - 4) (4.2) 

The left-hand part of equality (4.2) does not exceed unity, while the right-hand part 
for 1 > 1 is not smaller than unity. Hence that equality is only satisfied when both of 
its parts are equal unity. Equating the right-hand part to unity, we obtain COS T = 1 
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and T = 2 nk, where k is an integer. Since the optimum control for T =2nk has been 

already determined, and because modes with n > 2 need only be considered with con- 
dition (2.5), we conclude that modes with an even number n are not optimum for any 
T. 

5. Modes with an odd number of intervals. Letusnowsetn=21+1, 

where 1 > 1 is an integer. Substituting conditions (3.7) and (3.8) into equalities 

(2.4), we obtain for both cases of u = &‘I the following equations : 

sin T = 21 [sin (ta + t,) - sin t,], cos T - 1 =. (5.1) 
21 [cos (ts + t,) - cos t,] 

The substitntion into these of the expression for T in (2.5) transforms system (5.1) to 

sin+cos+= 2isin$-cos(t,++), (5.2) 

sin2 + = 21 sin +- sin t, + -$) 
( 

Since in accordance with (3.5) sin (ta / 2) # 0, it is possible to divide these equa- 

tions one by the other. We obtain 

tn + t,/2 = d/2 + nr 

where r is an integer. Substituting (5.3) into system (5.2) we obtain 

sin + 
(-1)r . z 

= 21 sin - 
2 

Let us introduce the notation 

(5.4) 

%=arcsrn 21 
. ( 

-!- sin 
z 

2 , l>i, 
1 o<z<zrc (5.5) 

The following inequalities 

O<Ctl<TL!G, a,< T/2, a,<n--z/2 (5.6) 

implied by (5.5) are obvious. 

First, let us find all solutions of Eqs. (5.3) and (5.4) for u = 1 In accordance with 

(3.4) we then have 0 < t, < 2n, hence the number P in equality (5.4) must beeven. 
The possible values of t, in the interval (0, 2~) are 

t,. = 2a1, t,” = 2 (ax - al) (5.7) 

where the notation (5.5) is used. Taking into account the evenness of r and the inequal- 
ities (5.6), we obtain for t,, which correspond to (5.7) and lie in the interval (0, an) 

from Eqs. (5.3) the following equations: 

t,’ = T / 2 - a,, t,” = n t 7 I 2 + al (5.8) 

For u = -1 the solution for tz and tn is derived as for u = 1, except that -r2 and 
the integer r - 1, are to be substituted for t2 and r , respectively. Quantities ra and 

Zr were defined in (3.5). Similarly to (5.7) we obtain 

-h 
, = 2al, Tgn = 2 (It - aJ (5.3) 

As previously, t, and t, are defined by formulas (5.8) and (3.5) respectively. Thus 
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for 1, and t, we have two solutions (5.7)- (5.9) in each of the cases of u = 1 and 

u = -1 , and these solutions satisfy conditions (3.4) and (3.5). 
Let us now determine quantities t, and a. We substitute expressions (3.5) ,(3.7) and 

(3.8) for ta and t, into formulas (2.3) and (2.4) for T and a. For n = 21 -t 1 we 

obtain 
tt $- t, + 2 (1 - 1) n + t, = T (5.10) 

a = t, - t, + 2 (I - 1) (n - f*) + t, (u = 1) 
t, + 2nZ, + Q + 2 (1 - 1) n + t, == T 
a = 23-d, + x2 - t, - 2 (1 - 1) (rc - T‘J - t, (IL = - 1) 

Substituting expressions (2.5), (5.7) and (5.8) for T, t, and t, respectively, into the 

first equality of (5. lo), in the case of u : 1 we obtain for tr in both solutions the fol- 

lowing equations: t,’ = zn (h_ _ z ..I_ 1) -t T / 2 _ q (I( : I) (5.11) 

t,” = 2n (k - l -I- 1) $- T / 2 - 3n - a, 

For u = -1 we similarly have for t, in both solutions 

tr’ -2n(k-Z+l-zI,)+T/2-cc~ (u=--1) (5.12) 
t,” z 2n (k - z f- 1 - 12) + 9 / 2 - 3n + a2 

For conditions 0 < t, < 2n to be satisfied in the case of u = --1 (see (3.6) ) it 
is necessary to select the integer I, taking into account inequality (5.6) so that (see 

(5.8)) t,’ ~~ t*‘, t,” z tnf’ (u = - 1) (5.13) 

Equating (5.12) and (5.13) for Is in both solutions,we obtain 

L,‘=k-l+l, 1,” = k - 1 - 1 (u=--1) (5.14) 

Now in the case of u ~1 1 we substitute into the equation for a in (5.10) formulas 

(5. ll), (5.7) and (5.8) for t,, t, and t,, respectively, and in the case of u =I -1 for- 

mulas (5.13), (5.9), (5.14) and (5.8) for ti, T,, I, and t, , respectively. We then obtain 
for a four expressions 

a,’ = T - 4ZaI, a+# = T - 41 (Z - CQ) (I( = 1) (5.15) 

a_’ z T - 2~ + 4~7 - 4Z (n - az) 
a_” = T - 2~ - 471- 41cq 

tu = _ 1) 

which correspond to a pair of solutions in each of the two cases of u -- &l In (5.15) 

T is that defined by formula (2.5), subscripts plus and minus relate to the sign of para- 
meter U, and the single and double primes correspond to the selected solution in formu- 
las (5.7) - (5.9) and (5.11) - (5.14). respectively. The integer i must be chosen so that 
a is at its maximum. 

Let us investigate the dependence of o on 1. Formulas (5.5) and (5.6) imply that 

al < ;I and decreases with increasing I. Hence I (n - al) increases and a+” and n-’ 

defined in (5.15) monotonically decrease with increasing 1. 

The term &cr in formulas (5.15) can be represented with the use of (5.5) in the form 

Uar -1 :! (u[ / sin al) sin T.‘E 

It will be readily seen that this expression monotonically increases with increasing al 
when 0 < CL, < n/Z. Hence 41ai monotonically decreases and fl+’ and II-” defined in 
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(5.15) monotonically increase with increasing 2. 

For t( = I the limits of variation of Z are determined by the conditions I> 1 and 

t, > 0 , while for u = - 1 they are determined by the conditions 12 i and I, > o 

From this, using equalities (5.11) and inequalities (5.6) in the case of u = 1 and equal- 
ity (5.14) in the case of u = -1, we obtain the limits of variation of 2 in the four 

cases which correspond to formulas (5.15). The limits for a+’ and a_’ defined in (5.15) 

are 1 < I< k + 1, and in the remaining two cases they are 1 < I< k - 1. The last 

inequalities are consistentonlywhen k > 2, hence solutions corresponding to a+” and 
a-” obtain only for k >, 2. 

Now, taking into account the monotonic&y of functions (5.15) with respect to 2 and 

the limits of variation of the latter, we can determine the maximum of 0 in terms of 

Z for each of the four cases. We obtain 
t 

a.4 = T - 4 (k + 1) a,,,, I = k + i (5.16) 

a+” - T - 4 (n - ccl), l--1 (k>,2) 

a_’ .= T - 4 (z / 2 - CQ, I = 1 

n_” :- T -4~~/2+n+(~---++~, l=k-i (kh2) 

Let us compare the functionals (5.16) for the four obtained modes. Since a,’ in(5.15) 

monotonically increases with increasing I, the inequality 

a,’ > T - 4u, = a, (5.17) 

is valid. Here al relates to the first mode (5.15) for 1 = 1. From (5. IS), (5.17) and 

the ine~ali~ CC, < IL / 2 implied by (5.6) we immediately obtain a,” ( a,. 
To estimate a_’ we shall first prove that czr < t ! 4. Taking the sines of both parts 

of equality (5.5) for I = 1 we obtain 

sin a, = l/a sin (z / 2) = sin (2: / 4) cos (7 / 4) < sin (T / 4) 

Since in accordance with (5.6) cur < n / 2, it follows that a r ( a / 4. The last 

inequality shows that parameters a,’ 

satisfy the inequality C_’ < aI. 
and a_’ defined by formulas (5.16) and (5.17) 

Since k > “1 and ok-i > 0, it follows from (5.16) that c_” < a’, and, consequent- 

ly, a_” < “1. 
Y Thus the three quantities a+“, a_’ and 

II defined in (5.15) are strictly smaller 

responding to u = 1 and to the first solu- 
tion in formulas (5.7). (5.8) and (5.11) is the 
optimum one. This mode is superior with 

3 4 
respect to the functional to all others, even 
when the choice of I = ‘l to which corre- 

Fig. 3 sponds functional al < a,’ is not the best. 

6. Analysis of optfmum modes. The solution of problem (2) is completely 

determined by formulas (3.9). (5.7), (5.8), (5.11) and (5.16) in which in the case of 
u = 1 quantities with a single prime apply. In accordance with the derived formulas 
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we have for any 2’ of the form (2.6) 

T-:2&+x, O(z<2n, f-k+f 

n zzz 2L + 1 = 2k -i 3. k=O, i,... 

t, t, f:. t / 2 - aI, t, =_ t, = . . . =: Jn-, = 2al 

t3 I tS =- . . . = fn+ = 2(n - a*), a = 3’ - &al 

(6.1) 

where (rl is that defined by (5.5). Besides the optimum solution (6.1) the first mode 

(5.15) is of interest in the case of 1 = 1. As indicated in Sect. 5, this mode is the best 

of modes with the smallest number of intervals, which is three. Setting in formulas 

(5.7), (5.8), (5.11) and (5.15) 1 = 1 we obtain for this mode the relationships 

T = 2nk + T, o< z< zn, k:=O, f,... (6.2) 
n = 3, I = 1, t, = 2xk + 7 I 2 - a,, tz = Za, 

t, = r ,/ 2 - a,, c1 = oI = T - 4a, 

which are similar to those in (6.1). For T < 2n and k = 0 mode (6.2) coincides 
with the optimum mode (6.1). 

For T = 2zk and 1; = 0 from equality (5.5) we obtain a, = 0. In this case soluu- 
tions (6,l) and (6.2) with n = 1 represent the optimum solution derived above, for 

which 
U‘ = 1, t, = T = a = 2nk (6.3) 

Functiona u (t) and w (t) for the derived modes are defined by the general formnlas 

(2.2) into which the relationships a = 1 and (6.1)- (6.3) must be substituted. 

As an example, let us consider the optimum motion 2’ = ?E , when modes (6.1) and 

(6.2) are the same, and formulas (5.5) and (6.1) yield 

T=z=n, n = 3, I= I, Cci = 1~16 (6.4) 
t, = tz = t, = n/3, a = n/3 

The function v (t) for the optimum motion (6.4) is shown in Fig. 3 and the pendulum 

Fig. 4 Fig. 5 
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phase trajectory in the tp cp’ -plane is given in Fig. 4. The trajectory consists of four 

vertical segments which corr~pond to switching points. Three arcs of circles, whose cen- 

ters are at the coordinate origin lie between the switching points, correspond to sections 

of constant velocity. The numerals zero through seven in Figs. 3 and 4 denote related 

points in the two diagrams. Note that the central angles of arcs in the phase plane are 

equal to the duration of motion along rhese arcs. In Fig. 5 all these angles are equal n/3. 

Let us investigate functions a (T) and a, (T) defined by equalities (6.1)- (6.3). 

Using notation (5.5) we represent these functions in the form 

a (T) = 2nk + fk (z), T = 2nk + T, o,<t<2n (6.5) 
a, (T) = 2nk + f,, (‘r), k = 0, 1, 2,. . . 

where 
jk(~)=a-4((FE+I)GCk+l=Z.-4(k+1) 

0<%<2n, k-:0,1,... 

The curves of functions a (T) and a, (T) specified by formulas (6.5) lie on the 

straight line a = T at points T = 2nk , At remaining points we have ar < a < T. 
The behavior of functions a (T) and a, (T) between points T = 2nk is determined 

by function fk (Z) defined in (6.6). 

A direct check will show that 

j,+)>o, f{>o, O<z<2n, k=O, 1 t... 

jk(Z) = ~[1--,(,~_,,,]+w)~ z-30 

fk (z) = 2?c + 2 (z - 2x) + 0 [(z - 23q% z -2x 

(6.71 

where primes denote derivatives with respect to ‘6. 
The analysis in Sect. 5 shows that for fixed _T function fk: (T) monotonically increases 

with increasing k. Passing to the limit k -+ 00, we obtain 

fo(~)<fi(~)<.. . -<fm(T) = ilmj,(T) = z -2sin $- 

Curves of function f& {r) are shown in Fig. 5 for k = 0, 1 and 00 by the lower, 

middle and upper lines, respectively. 

The difference between f. (r) and fin (r) is very small (see Fig. 5); it does not 

exceed 0.1, and all /k (r) lie between f,, and fOo. This implies that the simple mode 

(6.2) containing three constant velocity sections is very close with respect to the func- 

tional to optimum mode for all T ‘s. 

Let us consider the solution of problem (1) of time-optimum operation. Since accord- 

ing to (6.7) functions fk (T) are monotonic, functions a (T) and a, (T) must also be 
monotonic. Therefore there exist unique inverse functions 7’ (a) and T, (a) which 

according to Sect. 1 provide solutions of the problem of time-optimum operation. Func- 

tion T ia) determines the time of the time-optimum operation and is consequently the 
solution of problem (l), while function T, (a) defines the time of the time-optimum 
operation for the class of modes with not more than three constant velocity sections. To 
determine 7’ (n) and TX (a) for a specified a, we set ff = 2xk + b, where 0 < 
b < 2n, ll? 0. I . . , and then in accordance with (6.5) obtain 

T (n) -= 2nk + rc, T =-- fk-l (b), 
T, (a) --I hIi j- zl, T,, == fo-’ (0) 

k=O, 1,. (6.8) 
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where fk-J( .) k a monotonic function in the interval 10, 2n] and inverse of jh. (r) 

in (6.6) ; it can be determined by using curves in Fig. 5. Having determined by formu- 
las (6.8) the quantities ?’ and TJ for the specified a, we can calculated modes of 

time-optimum operation by formulas (6.1) - (6.3) and (2.3). The time-optimum ope- 

ration mode (6. l), i. e. the solution of problem (1) which corresponds to r, is close 

with respect to the functional to the simpler mode (6.2) with three constant velocity 

sections, which corresponds to time T,. 
The maximum relative errors with respect to the functional, resulting from the substi- 

tution of the mode with three sections for the optimum one, does not exceed 1 Aa / 
a 1 < 1.10/;1 in the case of problem (1) and 1 AZ' / T 1 < 1.2% for problem (2) for 

any a and 1. 
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A method due to Poincare’ is used to study the critical cases in essentially non- 

linear autonomous systems with one degree of freedom, and the situations lead- 

ing to the splitting of the trajectories. The first Liapunov method is used to study 
the problems of stability of the steady modes. A selfrotating, almost conservative 
system is considered as an example. Previous papers concerned with the analysis 

of the motions near the generating family of periodic or rotational motions ofan 
unperturbed system dealt, as a rule, with relatively simple cases in which the equa- 
tions of the parameters of the family defining the steady mode admit, in the first 
approximation, simple real roots /1 - 6/. Subtler and more complex cases in 

which the roots are multiple, or when some of the equations of the defining sys- 
tem are satisfied identically, were given much less attention /l, 7 - 11/. 

1. Statement of tha problcrm. We consider a wide class of autonomous 

systems with one degree of freedom and slowly varying parameters of the form 


